participants / team
BIIC Lab,Behavioral Informatics and Interaction Computation Lab,人類行為訊息暨互動計算實驗室,成立於 2014 年,致力於提供一個開放、有趣、並令人興奮的研究環境,進行前瞻技術研究—推進人類行為科學及新興應用領域。本實驗室由李祈均副教授領軍,目前有 26 位碩博士生,含 1 位博士後研究員、13 位博士生,每年研究成果豐碩,並持續進行跨領域的合作與推廣。我們的核心價值為人本運算,Human-centered Computing,以人因 human-factors 為基礎,透過我們的核心技術及不同專業領域的知識,研究人類行為以瞭解人的內在狀態與特性,使專家能夠執行更精準、全面、規模化的決策分析。
BIIC Lab 的基礎及應用研究著重在「人類的行為訊號處理(Behavioral Signal Processing )」,BSP 由 Prof. Shrikanth Narayanan 首創,是個橫跨行為科學與電資工程的研究領域。我們的核心技術包括語音辨識與合成、動作表情行為分析、情感個性互動運算、情緒多媒體生理模型、疾病診斷預測指標及腦造影資料分析。
即日起至 12/15 23:59:59 開放上傳報告喔! 請具得獎資格的隊伍主動上傳: 推甄落榜QQ隊 隨便 EcoMango 乾最後兩天才看到要上傳 Alan_Mise ChenChiAn期中考還沒看peko peko我真爛peko WEICV 今晚我想來點萊豬肉 真D難 Beginner 義想天開 義起守護 imgc0312 Super芒Kuo 雖然有點遲,但我們幫你準備好了範本啦! 如果沒有在期限內上傳,獲獎資格將進行遞補, 若報告有所缺失,須於通知起一周內補件,否則獲獎資格將進行遞補。
針對許多參賽者反應此批資料影像模糊、標註一致性等情形,競賽主辦方 TechManGo 團隊在此說明: 一、本次競賽擬以模仿真實應用場域而設計,考量到芒果處理廠的人力、水果保鮮時間、現地設備等諸多限制,以中低成本之一般消費型相機/攝影機所能蒐集之大量資料庫之前提下,不能確保所有影像品質皆一致。此外,考量利用相機一張一張拍攝獲取資料的方式效率低落,顯然不足以滿足未來自動智慧篩果機器所需,我們部分資料便利用攝影機錄影擷取芒果影像的方式,來模擬真實應用場域情境。藉由拍攝影片,我們預期蒐集的芒果照片將會有部分移動模糊 (Motion blur)、成像雜訊 (Sensor noise)以及光照變化(Luminance variant)等情況。模擬真實應用場域雖使競賽難度提升,但因標註者仍能以人工方式肉眼方式判斷並經兩階段檢驗其標籤正確性,我們期待模型仍有機會達到一定程度的準確率。 二、關於本次資料標註不一致之情形亦是真實應用場域會出現之問題,亦為本次競賽期望參賽者能克服的重點項目之一。除上述資料蒐集環境等因素,大數據,尤其是影像資料庫,經常會受到標記人員評量標準不一的影響,例如 [1] 就指出常見 ILSVRC (ImageNet subset )就存在至少 10 萬筆標註錯誤問題。以競賽本質而言,希望參賽者是能參與大量與真實情境的資料訓練,因此提供所有有能力標記之資料(不一致之部分可視為noisy labeled case)。此一比賽結束後,會針對反饋在資料庫釋出前再進行一次資料清理,也歡迎各位多多向主辦單位反應。 本次較晚提供說明,使參賽者感到困惑,盼望不會造成困擾,也仍期待能夠在排行榜見到各位! [1] Northcutt, Curtis G., Lu Jiang, and Isaac L. Chuang. "Confident learning: Estimating uncertainty in dataset labels." arXiv preprint arXiv:1911.00068 (2019).
決賽資料之等級的標籤範例(Grade sample)已發佈,欲知詳情請前往我們的FAQ:https://pse.is/U29ED 7/10 公佈的決賽等級資料被捉到有臭蟲,我們已經在下午更新囉! 如果你已經光速下載,記得再下載新資料! 讓我們為標記員和處理資料的同學拍拍手!
即日起至 6/23 23:59:59 開放挑選成果,可挑選 1~3 筆,系統會以 3 筆中成績最高者作為 private leaderboard 成績。 另外沒有挑選的話就不會登上 private leaderboard,也不會有初賽的最終成績,請大家一定要記得動動手指,到「上傳 > 挑選成果」頁面勾選成績! 快要看到真正排名了,大家快上!
即日起至2020/06/16 23:59:59 開放下載測試集 data 及上傳答案算分! 範例 csv 檔檔案格式也已提供,請至「資料」→「資料下載」→下載 test_example.csv 檔案,請大家照著照片名稱順序擺放好預測的答案(等級)! 每日限制上傳次數五次,歡迎大家踴躍上傳喔! 其他問題可見 FAQ: http://user81656.psee.io/SEN68
工作坊競賽教學影片上線囉! 網址在這邊: https://www.youtube.com/playlist?list=PLJ6QzDAugy1muFIHX17go-OR62avvWr1A 內含相關檔案及ppt,也歡迎加入競賽討論區,可以詢問影片相關問題喔!
「愛文芒果等級分類競賽」熱烈報名中!最高獎金 13 萬元!歡迎各科系學生、業界隊伍一起競爭,幫助愛文芒果成為台灣之光!
本競賽透過建立影像辨識演算法模型,對愛文芒果影像進行三種等級分類,既提出本議題的解決方案,也描繪出大眾對愛文芒果產業未來樣貌的想像。
台灣重要出口農產品之一的愛文芒果於近年銷量持續增長,不僅躍升為三大外銷高經濟生鮮果品之一,更將外銷國拓展至日本、中國、美國以及香港等地。雖然,在各國當地政府的政策配合下,台灣芒果較以往提高了知名度並拓展市佔率,卻還是遭遇其他同為芒果出口國(菲律賓、泰國)的削價競爭,因此諸多品種改良、採收後處理技術以及品牌行銷等提昇產品價值的工作,仍待科技輔助來推進。
而其中亟待改善的是採收後處理技術。愛文芒果採收後依品質篩選為 A、B、C 三等級,依序為出口用、內銷用、加工用。然而愛文芒果依靠人工篩選,除了農村人口流失導致人力短缺,篩果流程也因保鮮期壓縮地極短,導致篩果階段約有 10% 的誤差,若以外銷金額估計,每年恐怕損失 1600 萬台幣。
因此,BIIC Lab 與台灣瓦克國際股份有限公司合作,耗時數年收集愛文芒果影像資料,透過本競賽,培養 AI 人才,並建立開放共榮的台灣本地資料庫,希望於愛文芒果產業導入自動化、精準化概念的AI 影像辨識技術,在未來利用資料庫建立一套自動芒果篩果系統,並提升臺灣大眾對農業產業升級的意識,同時拉抬台灣本地愛文芒果的品牌精緻化。
相關問題諮詢,請洽:biiclab@ee.nthu.edu.tw
競賽論壇: AI CUP 2020|愛文芒果影像辨識雙項競賽 討論區
具中華民國學籍學生(研究生亦可)。業界亦可參加,另列入綜合競賽敘獎排名。
敘獎分為單項競賽獎金及綜合競賽獎金:
單項競賽獎金 | |||||
三類等級分類辨識競賽 (Grade Competition) | 第一名 | 第二名 | 第三名 | 優等 | 佳作(十名) |
10 萬元 | 5 萬元 | 3.5 萬元 | 1 萬元 | 十名,各 7.5 仟元 |
綜合競賽獎金 | |||
三類等級分類辨識競賽 (Grade Competition) | 第一名 | ||
3 萬元 | |||
五類不良品分類辨識競賽 (Defective Competition) | 第一名 | ||
3 萬元 | |||
雙項競賽綜合排名 (ORS) Overall Rating Score | 第一名 | 第二名 | 第三名 |
10 萬元 | 5 萬元 | 3.5 萬元 |
時間 | 等級分類競賽事件 |
---|---|
2020/02/03-05/15 | 開放報名(提供註冊及Sample data) |
2020/03/02 | 公布初賽訓練集、建構集資料開放下載 |
2020/03/09 | 公布建構集Baseline與演算法等 參數 |
2020/06/12 | 公布初賽測試集,開放下載及上傳答案算分 |
2020/06/16 23:59:59 | 初賽截止,關閉測試集的資料上傳答案功能 |
2020/06/24 | 公布初賽成績 |
2020/07/10 | 公布決賽訓練集、建構集資料開放下載 |
2020/07/17 | 公布建構集Baseline與演算法等參數 |
2020/10/30 | 併隊截止 |
2020/11/10 | 公布決賽測試集,開放下載及上傳答案算分 |
2020/11/15 23:59:59 | 決賽截止,關閉測試集的資料上傳答案功能 |
2020/12/02 | 公布決賽成績(系統分數),開始上傳報告 |
2020/12/15 23:59:59 | 上傳報告截止,開始評估(系統+報告) |
2020/12/29 | 公布最終成績(系統+報告) |
評估方式採用 WAR(Weighted Average Recall),其公式如下:
$$ WAR= \sum_{i=1}^I w(i) \ast Recall(i),\ 其中I=3$$